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1. INTRODUCTION

Since the propellant grain must support itself, it is a structural
member. Moreover, if the grain cracks before or during firing, then there
results an unknown thrust-time profile and perhaps a catastropic failure.
Part of the design process must therefore be an investigation of the struc-
tural integrity of the grain. A fundamental part of this investigation
is a stress-strain analysis of the propellant grain. On the basis of the
thermal, pressure, and acceleration loads and the support conditions, the
stress and strain distribution in the grain is to be determined.

Due to the complex grain geometries and complex loads and supports,

a numerical solution must be sought. A numerical method of sufficient
vergatility to handle these complexities is the finite element method.
In particular for continuum problems, the stiffness version of the finite

element method has proven to be the most successful.



2. STIFFNESS METHOD OUTLINE

The essential feature of the stiffness method is the ability to
analyze small elementary regions of the propellant grain independent of
the total configuration and then combine these regions together to find
the response of the total configuration.

The stiffness method has similarities to the Ritz method. The
equilibrium equations and stress boundary conditions are replaced by an
equivalent variational principle, 5377(2) = 0. The grain is divided into
elements within which the displacement has approximately a specified form.
For a plane strain problem and an axisymmetric elasticity problem, tri-
angular rings are used; in the axially symmetric shell problems, line
elements are used. The unknowns are the displacements in the elements.
They are expressed in terms of the node displacements which are then
determined so that the functional TT(u) is an extremum.

While the theory underlying the stiffness method is sufficiently
general to include three-dimensional problems, the programing and computer
capacity needed to carry out practical calculations is not generally
available. The current practice is to utilize two-dimensional programs.
The plane strain program and the axisymmetric program together provide
information about the state of stress which may be used for design. The
programs of the Mathematical Sciences Corporation have the ability to

include the effect of a flexible case bounding the grain.
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3. PLANE STRAIN PROBLEM BOUNDED BY A FLEXIBLE CASE
The plane strain program provides a stiffness method solution to the

following problem. In Figure 1 is a finite two-dimensional region bounded

by a circular shell.

Figure 1

This is the typical situation encountered in a solid propellant grain
analysis.
The solid region is governed by the following system of equatiomns,

referred to rectangular Cartesian coordinates.
Equilibrium: O—dﬁ,p +£fX=0 |, (1)

Strain-Displacement: € = %(ua +u )

dﬁ )ﬁ ,G,OL H] (2)




Stress-Strain: O'O('B = Cqﬁb\sévs - adB T , (3)
where

O_a(S is the stress tensor,

€<x,g is the strain tensor,

Ug is the displacement vector,

Caﬁ?i‘s are the coefficients of elasticity,

a‘xﬁ are the coefficients of thermal stress,

T is the temperature change,

£ is the body force vector.

The comma denotes partial differentiation, and the repeated indices are
summed over the range 1, 2. The index 1 is associated with the x
direction; the index 2 with the y direction.

At each point of the boundary of the solid with unit normal ng,

either the displacement vector u, or the surface force
FA = 0%8n 8 (4)

must be given. The temperature and body forces must be given throughout

the body. The coefficients of elasticity have the following symmetry:

The coefficients a®f are symmetric.

The shell is governed by the following equations.
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Strain-Displacement: € = %% + % ,
N = D€ + N,
Stress-Strain: 2
M=x3d¥
- dx2
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the in-plane stress resultant,
the transverse shear,

the moment resultant,

the shell pressure distribution,
the shell membrane stiffness,
the shell bending stiffness,

the thermal stress resultant,
the normal displacement,

the tangential displacement,

the radius of the shell,

a coordinate tangent to the shell.

(5)

(6)
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The stiffness method is applied to the solid using triangular elements

and linear variation of displacement in each element. In Figure 2 is a

typical element.

y
\ K

Figure 2

Within the element the displacements u and v are assumed to be of

the form

(=
]

ax + by +c ,
(8)

<
]

dx + ey + £ .

The six constants may be expressed in terms of the displacement at the

three nodes 1, j, k

.
2

u = £y + £ 00y)uy + £3GGy)e
9)
v = f,(x,y)v; + f5(x,y)vj + fe(x,y)vp
Note that the indices i, j, k are not free indices here. They denote

definite node numbers. This process is repeated for all the elements.



The result is a polyhedral displacement field defined by the values
Uss Vos o e at nodes. Putting this expression in the potential energy
expression and minimizing results in 2n linear equations in the 2n
unknown displacements at the n nodes; the coefficients are the stiffness
matrix for the solid.

The stiffness matrix is applied to the shell using line elements

and the exact solution to the equations (5) through (7) for concentrated

loads at the ends. 1In Figure 3 is a typical shell element.
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Figure 3
The result is an element stiffness expression,
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where the loads F1 to F6 are associated with the six displacements; [E]
is a 6 x 6 element stiffness matrix. The process is repeated for the
whole shell. The element stiffnesses are summed together to obtain a
stiffness matrix [ﬁ] for the complete shell.

Theoretically the stiffness matrix for the shell may be combined
with that of the solid and inverted to obtain the displacement solution.
However, in practice the result is a very poorly conditioned matrix that
is difficult to invert. Instead the solution is obtained by an iterative
scheme.

The solution is obtained for the solid using zero values for shell
displacements, and the reactions of the solid on the shell are calculated.
The deflections of the shell are then determined using these reactions
as loads. The solution is next obtained for the solid using the corrected
values of the shell displacement to obtain new reactions. The procedure
is then repeated until the error is as small as desired.

The computer program used to carry out the numerical computations
can handle up to 280 nodal points in a triangular breakdown of the solid
and 21 nodal points for the shell. The program accounts for body force,
temperature, and surface traction loads for the solid and temperature and
surface traction loads for the shell. The material properties may be
orthotropic and nonhomogeneous for both the shell and the solid.

Using the given loads, nodal point coordinates, and the node groups
bounding the elements, the program generates the stiffness matrix for the
solid and the shell, solves the system of linear equations to find the

displacement solution, and calculates the stresses.




4. AXISYMMETRIC PROBLEM BOUNDED BY A FLEXIBLE CASE

! The axisymmetric program provides a stiffness method solution to the
following problem. In Figure 4 is a cross section of an axisymmetric body

bounded by a flexible case.

Figure 4

This represents a problem often encountered in solid propellant grain
analysis.

The solid region is governed by the following system of equations.
Equilibrium: o', . +¢ =0 , (11)

Strain-Displacement: €., = %(u, , +u, .) , (12)
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Stress-Strain: ot = ClJrsérs -a'®T , (13)

where the definition of the terms is the same as before. The comma denotes
covariant differentiation in the cylindrical coordinate system r, 69, z ;
the indices range from 1 to 3. In this axisymmetric problem, there is no
69 dependence in any of the variables, and only the displacements u and
w in the r and 2z directions respectively are nonzero. Circumferen-

tial or hoop strains may exist:

ne

€p=€gy = (14)

is in general nonzero.
At each point of the boundary (of the solid with unit normal n, )

either the displacement vector u;, or the surface force
Fl = otn (15)

&

must be specified. Both u, = v and F2 =F must be zero for this
axisymmetric problem. The temperature and body forces must be given
throughout the body. The coefficients of elasticity have the same sym-

metry as before. The axisymmetric shell is first approximated by conical

elements. In Figure 5 is a two-element approximation.
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The conical frustrums are governed by the equations obtained from the
variational principle
Sm=0 ,

where

L
_ Q + po
T (u,w) x(C ﬁéqép D !BXo(Xﬁ)rds
0 !
ol
- (T B eo‘+ paua)rds 3
0
Q and /2 range over 1 and 2, and repeated indices are summed.

) s

(16)

\)‘
Y1 w1

Figure 6
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Using the notation of Figure 6, the strains €, and X are given by

_ du _usin@ w cos
e1 ds 62 " r + r ’ an
;( - dZW >< _ sinQ dw (18)
1 462 2 r ds °

The other quantities are defined as follows:

cB

p%A

Q
o3
o

p

the membrane coefficients of elasticity,

the bending coefficients of elasticity,

the thermal stresses, and

the surface tractions.
For the stiffness method, displacements of the form
s s
= - — +_
u = (1 Q)u1 A (19)

oo Lo o 4]
e e [ 6 )0

are assumed for each element. From this and equation (16) the element

(20)

stiffness matrices may be obtained.
As in the plane strain program the shell and solid stiffmess matrices
are not combined. The solution is obtained by the iteration technique

previously described.
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The computer program used to carry out the numerical computations
car handle up to 280 nodal points in a triangular breakdown of the solid
and 100 nodal points for the shell. The program accounts for body forces,
temperature, and surface traction loads for the solid and temperature and
surface traction loads for the shell. The material properties may be
orthotropic and nonhomogeneous for both the shell and the solid.

Using the given loads, mnodal point coordinates, and the node groups
bounding the elements, the program generates the stiffness matrix for the
solid and the shell, solves the system of linear equations to find the

displacement solution, and calculates the stresses.
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5. REVIEW OF CURRENT STATUS

The programs as they now stand are satisfactory for the majority of
problems encountered. However, they cannot handle materials that are
incompressible or nearly incompressible nor motor cases that are rela-
tively flexible because the iteration solution technique is poorly
behaved.

The first difficulty lies in the equations of elasticity rather than
the stiffness method. The equations of elasticity as usually stated are
not valid for incompressible materials ( /= 0.5). With displacements
as unknowns, the equations contain coefficients that approach infinity
as Poisson's ratio U/ approaches 0.5. This behavior results in a
deterioration of the numerical method as Poisson's ratio approaches 0.5.

A formulation suitable for incompressible isotropic nonhomogeneous

materials is the following.
Equilibrium: CrlJ,j + £ =0 , (21)

Strain-Displacement: €ij = —’5(ui,j + uj,i) s (22)

Win

i : . . . o T o o 3

p
Mean Strain-Mean Stress: € k_ 3aT =

) A Su

(24)
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where

i .

o' is the stress tensor,

€ .. 1is the strain tensor,

u is the displacement vector,

/
).,FL are the Lame constants,

a is the coefficient of thermal expansion
T is the temperature change,
£& is the body force vector,

P is the mean stress or hydrostatic pressure.

The comma denotes covariant differentiation, and the repeated indices are
summed. The indices range over the values 1, 2, and 3.
At each point of the boundary of the solid with unit normal n, o,

either the displacement vector u, or the surface force
F' = 0t (25)

is specified. The temperature and body forces are given throughout the
body .

This formulation is suitable for all values of Poisson's ratio in
the interval 0 < Jl g 0.5. It does not exhibit the infinite coeffi-
cients at J/ = 0.5 that the usual formulation does.

The stiffness method has been applied to this set of equations by
Mathematical Sciences Corporation. The resulting program is documented

in MSC Report No. 65-21-3.
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The second difficulty occurring with the relatively flexible cases
lies in the implementation of the iterative solution technique. In
Figure 7 the solid and the shell are shown as two separate problems, much
the way they are considered by the program. Also shown is an internal

pressure load p .

z ) zh

ee]
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Figure 7

Consider the point P 1in Figure 7 and its radial displacement u . If
the boundary of the solid is held rigidly, then there is no displacement
but a reaction stress O . If the boundary of the solid is free, then
there is a displacement u but no stress (0 . If the case experiences
a stress (0 , then there is a displacement u . If there is no stress
on the case, then there is no displacement. These statements are repeated

graphically in Figure 8.
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Figure 8

The solution to the combined problem is the intersection of case and solid
curves. The iterative solution proceeds as follows. A solution for the
solid is obtained using zero values for the shell displacements, point 1.
This results in reaction loads (Ti on the shell. The deflections of
the shell are then obtained due to these reactions, point 2. The solid
is held at the corrected displacements u, and a solution obtained,
point 3. The procedure is then repeated until the error is as small as
desired.

This iterative techunique works very well for relatively stiff cases.

A very high slope of the case curve in Figure 8 is a relatively stiff

case; a flatter slope is a relatively flexible case. If this process is
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repeated for flatter and flatter slopes of the case curve, a point will
be reached where the process no longer spirals inward but diverges.

By the time the solution at point 4 is established, there is suffi-
cient information available to estimate the intersection of the solid and
case curves. The program does this and continues. The estimation of the
intersection is repeated every time sufficient information is available.

For relatively stiff cases this process works very well. Below a
certain case flexibility the iterative process begins to deteriorate,
and the error cannot be reduced to a satisfactory level.

When the solid and the case stiffness matrices are combined and a
solution sought directly, just the opposite occurs. The relatively stiff
cases lead to numerical difficulties, while the relatively flexible cases

are the easiest to handle.
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6. RECOMMENDATIONS FOR FUTURE WORK

The application of the stiffness method to the incompressible problem
is well on its way to being an accomplished fact.

The iterative technique has proven, in many problems, to be a very
effective means to incorporate the flexible case into the analysis. For
the relatively flexible case, more work needs to be done with the iterative
technique in order to expand the range of case flexibilities that may be
handled. It is recommended that two avenues be followed. Only elementary
numerical means have been used to find the intersection of the case and
s0lid curves in Figure 8. Continued effort in this area should lead to
useful improvements. Second, at some point it will become more profitable
in terms of machine time and accuracy to combine the shell and case stiff-
ness matrices and seek the solution directly. This should be included as
a program option.

Although the application of the stiffness method to the incompressible
equations and the considerations of a flexible case are separate ideas,
their incorporation into a computer program cannot proceed independently.
As a result, further study is required in order to incorporate the flexible

cases into the incompressible programs.




